nginx
Nginx作为后端绕不开的中间件是或多或少要用得到的,优秀的反代功能对本地调试也有不少作用。
前段时间F5收购Nginx的新闻也着实有些无厘头的感觉。
干硬件的牛逼~(此处有破音
nginx 基础架构
众所周知,nginx性能高,而nginx的高性能与其架构是分不开的。那么nginx究竟是怎么样的呢?这一节我们先来初识一下nginx框架吧。
nginx在启动后,在unix系统中会以daemon的方式在后台运行,后台进程包含一个master进程和多个worker进程。我们也可以手动地关掉后台模式,让nginx在前台运行,并且通过配置让nginx取消master进程,从而可以使nginx以单进程方式运行。很显然,生产环境下我们肯定不会这么做,所以关闭后台模式,一般是用来调试用的,在后面的章节里面,我们会详细地讲解如何调试nginx。所以,我们可以看到,nginx是以多进程的方式来工作的,当然nginx也是支持多线程的方式的,只是我们主流的方式还是多进程的方式,也是nginx的默认方式。nginx采用多进程的方式有诸多好处,所以我就主要讲解nginx的多进程模式吧。
刚才讲到,nginx在启动后,会有一个master进程和多个worker进程。master进程主要用来管理worker进程,包含:接收来自外界的信号,向各worker进程发送信号,监控worker进程的运行状态,当worker进程退出后(异常情况下),会自动重新启动新的worker进程。而基本的网络事件,则是放在worker进程中来处理了。多个worker进程之间是对等的,他们同等竞争来自客户端的请求,各进程互相之间是独立的。一个请求,只可能在一个worker进程中处理,一个worker进程,不可能处理其它进程的请求。worker进程的个数是可以设置的,一般我们会设置与机器cpu核数一致,这里面的原因与nginx的进程模型以及事件处理模型是分不开的。nginx的进程模型,可以由下图来表示:
nginx进程模型
在nginx启动后,如果我们要操作nginx,要怎么做呢?从上文中我们可以看到,master来管理worker进程,所以我们只需要与master进程通信就行了。master进程会接收来自外界发来的信号,再根据信号做不同的事情。所以我们要控制nginx,只需要通过kill向master进程发送信号就行了。比如kill -HUP pid,则是告诉nginx,从容地重启nginx,我们一般用这个信号来重启nginx,或重新加载配置,因为是从容地重启,因此服务是不中断的。master进程在接收到HUP信号后是怎么做的呢?首先master进程在接到信号后,会先重新加载配置文件,然后再启动新的worker进程,并向所有老的worker进程发送信号,告诉他们可以光荣退休了。新的worker在启动后,就开始接收新的请求,而老的worker在收到来自master的信号后,就不再接收新的请求,并且在当前进程中的所有未处理完的请求处理完成后,再退出。当然,直接给master进程发送信号,这是比较老的操作方式,nginx在0.8版本之后,引入了一系列命令行参数,来方便我们管理。比如,./nginx -s reload,就是来重启nginx,./nginx -s stop,就是来停止nginx的运行。如何做到的呢?我们还是拿reload来说,我们看到,执行命令时,我们是启动一个新的nginx进程,而新的nginx进程在解析到reload参数后,就知道我们的目的是控制nginx来重新加载配置文件了,它会向master进程发送信号,然后接下来的动作,就和我们直接向master进程发送信号一样了。
现在,我们知道了当我们在操作nginx的时候,nginx内部做了些什么事情,那么,worker进程又是如何处理请求的呢?我们前面有提到,worker进程之间是平等的,每个进程,处理请求的机会也是一样的。当我们提供80端口的http服务时,一个连接请求过来,每个进程都有可能处理这个连接,怎么做到的呢?首先,每个worker进程都是从master进程fork过来,在master进程里面,先建立好需要listen的socket(listenfd)之后,然后再fork出多个worker进程。所有worker进程的listenfd会在新连接到来时变得可读,为保证只有一个进程处理该连接,所有worker进程在注册listenfd读事件前抢accept_mutex,抢到互斥锁的那个进程注册listenfd读事件,在读事件里调用accept接受该连接。当一个worker进程在accept这个连接之后,就开始读取请求,解析请求,处理请求,产生数据后,再返回给客户端,最后才断开连接,这样一个完整的请求就是这样的了。我们可以看到,一个请求,完全由worker进程来处理,而且只在一个worker进程中处理。
那么,nginx采用这种进程模型有什么好处呢?当然,好处肯定会很多了。首先,对于每个worker进程来说,独立的进程,不需要加锁,所以省掉了锁带来的开销,同时在编程以及问题查找时,也会方便很多。其次,采用独立的进程,可以让互相之间不会影响,一个进程退出后,其它进程还在工作,服务不会中断,master进程则很快启动新的worker进程。当然,worker进程的异常退出,肯定是程序有bug了,异常退出,会导致当前worker上的所有请求失败,不过不会影响到所有请求,所以降低了风险。当然,好处还有很多,大家可以慢慢体会。
上面讲了很多关于nginx的进程模型,接下来,我们来看看nginx是如何处理事件的。
有人可能要问了,nginx采用多worker的方式来处理请求,每个worker里面只有一个主线程,那能够处理的并发数很有限啊,多少个worker就能处理多少个并发,何来高并发呢?非也,这就是nginx的高明之处,nginx采用了异步非阻塞的方式来处理请求,也就是说,nginx是可以同时处理成千上万个请求的。想想apache的常用工作方式(apache也有异步非阻塞版本,但因其与自带某些模块冲突,所以不常用),每个请求会独占一个工作线程,当并发数上到几千时,就同时有几千的线程在处理请求了。这对操作系统来说,是个不小的挑战,线程带来的内存占用非常大,线程的上下文切换带来的cpu开销很大,自然性能就上不去了,而这些开销完全是没有意义的。
为什么nginx可以采用异步非阻塞的方式来处理呢,或者异步非阻塞到底是怎么回事呢?我们先回到原点,看看一个请求的完整过程。首先,请求过来,要建立连接,然后再接收数据,接收数据后,再发送数据。具体到系统底层,就是读写事件,而当读写事件没有准备好时,必然不可操作,如果不用非阻塞的方式来调用,那就得阻塞调用了,事件没有准备好,那就只能等了,等事件准备好了,你再继续吧。阻塞调用会进入内核等待,cpu就会让出去给别人用了,对单线程的worker来说,显然不合适,当网络事件越多时,大家都在等待呢,cpu空闲下来没人用,cpu利用率自然上不去了,更别谈高并发了。好吧,你说加进程数,这跟apache的线程模型有什么区别,注意,别增加无谓的上下文切换。所以,在nginx里面,最忌讳阻塞的系统调用了。不要阻塞,那就非阻塞喽。非阻塞就是,事件没有准备好,马上返回EAGAIN,告诉你,事件还没准备好呢,你慌什么,过会再来吧。好吧,你过一会,再来检查一下事件,直到事件准备好了为止,在这期间,你就可以先去做其它事情,然后再来看看事件好了没。虽然不阻塞了,但你得不时地过来检查一下事件的状态,你可以做更多的事情了,但带来的开销也是不小的。所以,才会有了异步非阻塞的事件处理机制,具体到系统调用就是像select/poll/epoll/kqueue这样的系统调用。它们提供了一种机制,让你可以同时监控多个事件,调用他们是阻塞的,但可以设置超时时间,在超时时间之内,如果有事件准备好了,就返回。这种机制正好解决了我们上面的两个问题,拿epoll为例(在后面的例子中,我们多以epoll为例子,以代表这一类函数),当事件没准备好时,放到epoll里面,事件准备好了,我们就去读写,当读写返回EAGAIN时,我们将它再次加入到epoll里面。这样,只要有事件准备好了,我们就去处理它,只有当所有事件都没准备好时,才在epoll里面等着。这样,我们就可以并发处理大量的并发了,当然,这里的并发请求,是指未处理完的请求,线程只有一个,所以同时能处理的请求当然只有一个了,只是在请求间进行不断地切换而已,切换也是因为异步事件未准备好,而主动让出的。这里的切换是没有任何代价,你可以理解为循环处理多个准备好的事件,事实上就是这样的。与多线程相比,这种事件处理方式是有很大的优势的,不需要创建线程,每个请求占用的内存也很少,没有上下文切换,事件处理非常的轻量级。并发数再多也不会导致无谓的资源浪费(上下文切换)。更多的并发数,只是会占用更多的内存而已。 我之前有对连接数进行过测试,在24G内存的机器上,处理的并发请求数达到过200万。现在的网络服务器基本都采用这种方式,这也是nginx性能高效的主要原因。
我们之前说过,推荐设置worker的个数为cpu的核数,在这里就很容易理解了,更多的worker数,只会导致进程来竞争cpu资源了,从而带来不必要的上下文切换。而且,nginx为了更好的利用多核特性,提供了cpu亲缘性的绑定选项,我们可以将某一个进程绑定在某一个核上,这样就不会因为进程的切换带来cache的失效。像这种小的优化在nginx中非常常见,同时也说明了nginx作者的苦心孤诣。比如,nginx在做4个字节的字符串比较时,会将4个字符转换成一个int型,再作比较,以减少cpu的指令数等等。
现在,知道了nginx为什么会选择这样的进程模型与事件模型了。对于一个基本的web服务器来说,事件通常有三种类型,网络事件、信号、定时器。从上面的讲解中知道,网络事件通过异步非阻塞可以很好的解决掉。如何处理信号与定时器?
首先,信号的处理。对nginx来说,有一些特定的信号,代表着特定的意义。信号会中断掉程序当前的运行,在改变状态后,继续执行。如果是系统调用,则可能会导致系统调用的失败,需要重入。关于信号的处理,大家可以学习一些专业书籍,这里不多说。对于nginx来说,如果nginx正在等待事件(epoll_wait时),如果程序收到信号,在信号处理函数处理完后,epoll_wait会返回错误,然后程序可再次进入epoll_wait调用。
另外,再来看看定时器。由于epoll_wait等函数在调用的时候是可以设置一个超时时间的,所以nginx借助这个超时时间来实现定时器。nginx里面的定时器事件是放在一颗维护定时器的红黑树里面,每次在进入epoll_wait前,先从该红黑树里面拿到所有定时器事件的最小时间,在计算出epoll_wait的超时时间后进入epoll_wait。所以,当没有事件产生,也没有中断信号时,epoll_wait会超时,也就是说,定时器事件到了。这时,nginx会检查所有的超时事件,将他们的状态设置为超时,然后再去处理网络事件。由此可以看出,当我们写nginx代码时,在处理网络事件的回调函数时,通常做的第一个事情就是判断超时,然后再去处理网络事件。
nginx 高可用
API高可用方案
Nginx 自带负载均衡功能,并且当 Nginx 后端某个服务器挂掉后,Nginx 会自动剔除该服务器,将请求转发到可用的服务器,通过这种方式实现了后端 API 服务的高可用(HA)。但是 Nginx 是单点的,如果 Nginx 挂了,后端的所有服务器就都不能访问,所以在实际生产环境中,也需要对 Nginx 做高可用。
Keepalived 是一个高性能的服务器高可用或热备解决方案,Keepalived 主要来防止服务器单点故障的发生问题,可以通过 Keepalived 对前端 Nginx 实现高可用。Keepalived + Nginx 的高可用方案具有如下特点:
- 服务功能强大
- 维护简单
Keepalived简介
Keepalived 以 VRRP 协议为基础来实现高可用性。VRRP(Virtual Router Redundancy Protocol,虚拟路由冗余协议)是用于实现路由器冗余的协议,它将两台或多台路由器设备虚拟成一个设备,对外提供虚拟路由器 IP(一个或多个),如下图所示。
在上图中,将 Nginx + Keepalived 部署在两台服务器上,拥有两个真实的 IP(IP1 和 IP2),通过一定的技术(如 LVS)虚拟出一个虚拟 IP(VIP),外界请求通过访问 VIP 来访问服务。在两台 Nginx + Keepalived 的服务器上,同一时间只有一台会接管 VIP(叫做 Master)提供服务,另一台(叫做 Slave)会检测 Master 的心跳,当发现 Master 停止心跳后,Slave 会自动接管 VIP 以提供服务(此时,Slave 变成 Master)。通过这种方式来实现 Nginx 的高可用,Nginx 可以对后台 API 服务器做高可用,这样通过 Nginx + Keepalived 的组合方案就实现了整个 API 集群的高可用。
nginx 负载均衡
Nginx的五种负载均衡策略
Nginx可以根据客户端IP进行负载均衡,在upstream里设置ip_hash,就可以针对同一个C类地址段中的客户端选择同一个后端服务器,除非那个后端服务器宕了才会换一个。
nginx的upstream目前支持的5种方式的分配
轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
1 | upstream backserver { |
指定权重
指定轮询几率,weight和访问比率成正比,用于后端服务器性能不均的情况。
1 | upstream backserver { |
ip_hash(ip绑定)
每个请求按访问ip的hash结果分配,这样每个访客固定访问一个后端服务器,可以解决session的问题。
1 | upstream backserver { |
fair(第三方)
按后端服务器的响应时间来分配请求,响应时间短的优先分配。
1 | upstream backserver { |
url_hash(第三方)
按访问url的hash结果来分配请求,使每个url定向到同一个后端服务器,后端服务器为缓存时比较有效。
1 | upstream backserver { |
在需要使用负载均衡的server中增加
1 | proxy_pass http://backserver/; |
max_fails :允许请求失败的次数默认为1.当超过最大次数时,返回proxy_next_upstream 模块定义的错误
fail_timeout:max_fails次失败后,暂停的时间
nginx 缓存机制
Nginx缓存的基本思路
利用请求的局部性原理,将请求过的内容在本地建立一个副本,下次访问时不再连接到后端服务器,直接响应本地内容
Nginx服务器启动后,会对本地磁盘上的缓存文件进行扫描,在内存中建立缓存索引,并有专门的进程对缓存文件进行过期判断、更新等进行管理
对于缓存,我们大概会有以下问题:
(1)缓存文件放在哪儿?
(2)缓存的空间大小是否可以限定?
(3)如何指定哪些请求被缓存?
(4)缓存的有效期是多久?
(5)对于某些请求,是否可以不走缓存?
解决这些问题后,nginx的缓存也就基本配置完成了,下面看详细配置过程
开启缓存
要使用缓存,首先要使用 proxy_cache_path 这个指令(必须放在 http 上下文的顶层位置),然后在目标上下文中使用 proxy_cache 指令
配置示例
1 | http { |
proxy_cache_path 有两个必填参数,第一个参数为 缓存目录,第二个参数keys_zone指定缓存名称和占用内存空间的大小(注:示例中的10m是对内存中缓存内容元数据信息大小的限制,如果想限制缓存总量大小,需要用 max_size 参数)
proxy_cache 的参数为之前指定的缓存名称
缓存管理的相关进程
在缓存工作中有两个附加进程:
(1)缓存管理器
定期检查缓存状态,看缓存总量是否超出限制,如果超出,就移除其中最少使用的部分
(2)缓存加载器
加载器只在nginx启动后运行一次,把缓存内容的元数据信息加载到内存空间,如果一次性加载全部缓存信息,会大量消耗资源,使nginx在启动后的几分钟里变慢,为避免此问题,有3种加载策略:
loader_threshold – 指定每次加载执行的时间
loader_files – 每次最多加载的数量
loader_sleeps – 每次加载的延时
例如:
1 | proxy_cache_path /data/nginx/cache keys_zone=one:10m loader_threshold=300 loader_files=200; |
综合示例
1 | http { |